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1  Honour School of Mathematics and Statistics  
 
1.1 Units 
 
See the current edition of the Examination Regulations at  
https://examregs.admin.ox.ac.uk for the full regulations governing these examinations. 
The examination conventions can be found on the Canvas course site. 
 
In Part C, 

• each candidate shall offer a minimum of six units and a maximum of eight units 
from the schedule of units for Part C 

• and each candidate shall also offer a dissertation on a statistics project 
(equivalent of 2 units). 

• At least 3 of the units taken by Part C students must be assessed by written 
examination. 

 
At least two units should be from the schedule of ‘Statistics’ units.  
The USMs for the dissertation and the best six units will count for the final classification. 
 
Units from the schedule of ‘Mathematics Department units’ for Part C of the Honour School 
of Mathematics are also available – see Section 3. 
 
This booklet describes the units available in Part C. Information about dissertations/ 
statistics projects will be available on the Department of Statistics Canvas site. 
 
All of the units described in this booklet are “M-level”. 

Students are asked to register for the options they intend to take by the end of week 10, 
Trinity Term 2025 using the Mathematical Institute course management portal.  
https://courses.maths.ox.ac.uk/course/index.php?categoryid=876.  Students may alter 
the options they have registered for after this but it is helpful if their registration is as 
accurate as possible. Students will then be asked to sign up for classes at the start of 
Michaelmas Term 2025. Students who register for a course or courses for which there is 
a quota should consider registering for an additional course (by way of a "reserve choice") 
in case they do not receive a place on the course with the quota.  

Every effort will be made when timetabling lectures to ensure that mathematics lectures 
do not clash. However, because of the large number of options this may sometimes be 
unavoidable.  
 
1.2 Part C courses in future years 
 
In any year, most courses available in Part C that year will normally also be available in 
Part C the following year. However, sometimes new options will be added or existing 
options may cease to run. The list of courses that will be available in Part C in any year 
will be published by the end of the preceding Trinity Term. 
 
 
 
 

https://examregs.admin.ox.ac.uk/
https://courses.maths.ox.ac.uk/course/index.php?categoryid=876
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1.3 Course list by term  
 
The 2025-2026 list of Part C courses by term is: 
 
Michaelmas Term 
 
SC1 Stochastic Models in Mathematical Genetics 
SC2 Probability and Statistics for Network Analysis 
SC6 Graphical Models 
SC7 Bayes Methods 
SC9 Probability on Graphs and Lattices 
SC10 Algorithmic Foundations of Learning 
 
Hilary Term 
 
SC4 Advanced Topics in Statistical Machine Learning 
SC5 Advanced Simulation Methods 
SC11 Climate Statistics 
C8.4 Probabilistic Combinatorics. 
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2. Statistics Units 
 
2.1 SC1 Stochastic Models in Mathematical Genetics – 16 MT  
 
Level: M-level 
Method of Assessment: written examination 
Weight: Unit 
 
Recommended Prerequisites 
Part A A8 Probability. 
SB3.1 Applied Probability would be helpful. 
 
Aims & Objectives 
The aim of the lectures is to introduce modern stochastic models in mathematical 
population genetics and give examples of real world applications of these models. 
Stochastic and graph theoretic properties of coalescent and genealogical trees are studied 
in the first eight lectures. Diffusion processes and extensions to model additional key 
biological phenomena are studied in the second eight lectures. 
 
Synopsis 
Evolutionary models in Mathematical Genetics:  
The Wright-Fisher model. The Genealogical Markov chain describing the number 
ancestors back in time of a collection of DNA sequences.  
 
The Coalescent process describing the stochastic behaviour of the ancestral tree of a 
collection of DNA sequences. Mutations on ancestral lineages in a coalescent tree. 
Models with a variable population size.  
 
The frequency spectrum and age of a mutation. Ewens’ sampling formula for the 
probability distribution of the allele configuration of DNA sequences in a sample in the 
infinitely-many-alleles model. Hoppe’s urn model for the infinitely-many-alleles model.  
 
The infinitely-many-sites model of mutations on DNA sequences. Gene trees as perfect 
phylogenies describing the mutation history of a sample of DNA sequences. Graph 
theoretic constructions and characterizations of gene trees from DNA sequence 
variation. Gusfield’s construction algorithm of a tree from DNA sequences. Examples of 
gene trees from data.  
 
Modelling biological forces in Population Genetics: Recombination. The effect of 
recombination on genealogies. Detecting recombination events under the infinitely-
many-sites model. Hudson’s algorithm. Haplotype bounds on recombination events. 
Modelling recombination in the Wright-Fisher model. The coalescent process with 
recombination: the ancestral recombination graph. Properties of the ancestral 
recombination graph.  
 
Introduction to diffusion theory. Tracking mutations forward in time in the Wright-Fisher 
model. Modelling the frequency of a neutral mutation in the population via a diffusion 
process limit. The generator of a diffusion process with two allelic types. The probability 
of fixation of a mutation. Genic selection. Extension of results from neutral to selection 
case. Behaviour of selected mutations.  
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Reading 
R. Durrett, Probability Models for DNA Sequence Evolution, Springer, 2008  
A.Etheridge, Some Mathematical Models from Population Genetics. Ecole d’Eté de 
Probabilities de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, 2012 
W. J. Ewens, Mathematical Population Genetics, 2nd Ed, Springer, 2004  
J. R. Norris, Markov Chains, Cambridge University Press, 1999 
 M. Slatkin and M. Veuille, Modern Developments in Theoretical Population Genetics, 
Oxford Biology, 2002 
S. Tavaré and O. Zeitouni, Lectures on Probability Theory and Statistics, Ecole d’Eté de 
Probabilities de Saint-Flour XXXI - 2001, Lecture Notes in Mathematics 1837, Springer, 
2004 
 
 
2.2 SC2 Probability and Statistics for Network Analysis – 16 MT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
For this course, 2 lectures and 2 intercollegiate classes are replaced by 2 practical 
classes. (The total time for this course is the same as for other Part C courses.) 
 
Recommended prerequisites 
Part A A8 Probability and A9 Statistics  
 
Aims and Objectives 
Many data come in the form of networks, for example friendship data and protein-protein 
interaction data. As the data usually cannot be modelled using simple independence 
assumptions, their statistical analysis provides many challenges. The course will give an 
introduction to the main problems and the main statistical techniques used in this field. 
The techniques are applicable to a wide range of complex problems. The statistical 
analysis benefits from insights which stem from probabilistic modelling, and the course will 
combine both aspects. 
 
Synopsis 
Exploratory analysis of networks. The need for network summaries. Degree distribution, 
clustering coefficient, shortest path length. Motifs. 
 
Probabilistic models: Bernoulli random graphs, geometric random graphs, preferential 
attachment models, small world networks, inhomogeneous random graphs, exponential 
random graphs. 
 
Small subgraphs: Stein’s method for normal and Poisson approximation. Branching 
process approximations, threshold behaviour, shortest path between two vertices.  
 
Statistical analysis of networks: Sampling from networks. Parameter estimation for 
models. Inferring edges in networks. Network comparison. A brief look at community 
detection. 
 
Reading 
R. Durrett, Random Graph Dynamics, Cambridge University Press,2007 
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E.D Kolaczyk and G. Csádi, Statistical Analysis of Network Data with R, Springer, 2014 
M. Newman, Networks. Oxford University Press 
 
 
2.3 SC4 Advanced Topics in Statistical Machine Learning – 16 HT 
 
Level: M-level 
Methods of Assessment: written examination. 
Weight: Unit 
 
Recommended prerequisites 
The course requires a good level of mathematical maturity. Students are expected to be 
familiar with core concepts in statistics (regression models, bias-variance tradeoff, 
Bayesian inference), probability (multivariate distributions, conditioning) and linear algebra 
(matrix-vector operations, eigenvalues and eigenvectors). Previous exposure to machine 
learning (empirical risk minimisation, dimensionality reduction, overfitting, regularisation) 
is highly recommended. 
Students would also benefit from being familiar with the material covered in the following 
courses offered in the Statistics department:  SB2.1 Foundations of Statistical Inference 
and in SB2.2 Statistical Machine Learning. 
 
Aims and Objectives 
Machine learning (ML) is a core technology widely used across the sciences, engineering, 
and society, enabling pattern discovery and accurate prediction from large datasets. This 
course focuses on statistical machine learning, highlighting the probabilistic foundations 
that underpin modern ML approaches, including artificial intelligence (AI). The course 
studies both unsupervised and supervised learning. Several advanced and state-of-the-
art topics, such as large language models (LLMs), are covered in detail. The course also 
covers computational considerations of machine learning algorithms and how they can 
scale to large datasets. 
 
Synopsis 

• Empirical risk minimisation. Loss functions. Generalization. Over- and underfitting. 
Regularisation. 

• Support vector machines. 

• Kernel methods and reproducing kernel Hilbert spaces. Representer theorem. 
Representation of probabilities in RKHS. 

• Probabilistic machine learning: fundamentals of Bayesian inference. 

• Variational inference, amortized variational inference. 

• Gaussian processes 

• Deep learning fundamentals: neural networks; automatic differentiation; stochastic 
gradient descent. 

• Large language models: transformers, pre-training, scaling laws, post-training, 
evaluation 

 
Software 
Knowledge of Python is not required for this course, but some examples may be done in 
Python. Students interested in learning Python are referred to the following free 
University IT online course, which should ideally be taken before the beginning of this 
course: https://skills.it.ox.ac.uk/whats-on#/course/LY046 

https://skills.it.ox.ac.uk/whats-on#/course/LY046
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Reading 
C. Bishop, Pattern Recognition and Machine Learning, Springer,2007 
K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012 
 
Further Reading 
T. Hastie, R. Tibshirani, J Friedman, Elements of Statistical Learning, Springer, 2009 
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 
2011, http://scikit-learn.org/stable/tutorial/ 
 
 
2.4 SC5 Advanced Simulation Methods - 16 HT  
 
Level: M-level 
Methods of Assessment: This course is assessed by written examination. 
Weight: Unit 
 
Recommended Prerequisites 
The course requires a good level of mathematical maturity as well as some statistical 
intuition and background knowledge to motivate the course. Students are expected to be 
familiar with core concepts from probability (conditional probability, conditional densities, 
properties of conditional expectations, basic inequalities such as Markov's, Chebyshev's 
and Cauchy-Schwarz’s, modes of convergence), basic limit theorems from probability in 
particular the strong law of large numbers and the central limit theorem, Markov chains, 
aperiodicity, irreducibility, stationary distributions, reversibility and convergence. Most of 
these concepts are covered in courses offered in the Statistics department, in particular 
prelims probability, A8 probability and SB3.1 (formerly SB3a) Applied Probability. 
Familiarity with basic Monte Carlo methods will be helpful, as for example covered in A12 
Simulation and Statistical Programming. 
Some familiarity with concepts from Bayesian inference such as posterior distributions will 
be useful in order to understand the motivation behind the material of the course. 
 
Aims and Objectives 
The aim of the lectures is to introduce modern simulation methods. 
This course concentrates on Markov chain Monte Carlo (MCMC) methods and Sequential 
Monte Carlo (SMC) methods. Examples of applications of these methods to complex 
inference problems will be given. 
 
Synopsis 
Classical methods: inversion, rejection, composition. 
 
Importance sampling.    
 
MCMC methods:  elements of discrete-time general state-space Markov chains theory, 
Metropolis-Hastings algorithm. 
 
Advanced MCMC methods: Gibbs sampling, slice sampling, tempering/annealing, 
Hamiltonian (or Hybrid) Monte Carlo, pseudo-marginal MCMC. 
 
Sequential importance sampling. 
 

http://scikit-learn.org/stable/tutorial/
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SMC methods: nonlinear filtering. 
 
Reading 
C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd edition, Springer-
Verlag, 2004 
 
Further reading 
J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, 2001 
 
 
2.5 SC6 Graphical Models – 16 MT 
 
Level: M-level 
Methods of Assessment: This course is assessed by written examination. 
Weight: Unit 
 
Recommended Prerequisites 
The basics of Markov chains (in particular, conditional independence) from Part A 
Probability is assumed. Likelihood theory, contingency tables, and likelihood-ratio tests 
are also important; this is covered in Part A Statistics. Knowledge of exponential families 
and linear models (as covered in Part B Foundations of Statistical Inference and Applied 
Statistics) would be useful, but is not essential. 
 
Aims and Objectives 
This course will give an overview of the use of graphical models as a tool for statistical 
inference. Graphical models relate the structure of a graph to the structure of a multivariate 
probability distribution, usually via a factorization of the distribution or conditional 
independence constraints. This has two broad uses: first, conditional independence can 
provide vast savings in computational effort, both in terms of the representation of large 
multivariate models and in performing inference with them; this makes graphical models 
very popular for dealing with big data problems. Second, conditional independence can 
be used as a tool to discover hidden structure in data, such as that relating to the direction 
of causality or to unobserved processes. As such, graphical models are widely used as 
causal models in genetics, medicine, epidemiology, statistical physics, economics, the 
social sciences and elsewhere. 
 
Students will develop an understanding of the use of conditional independence and 
graphical structures for dealing with multivariate statistical models. They will appreciate 
how this is applied to causal modelling, and to computation in large-scale statistical 
problems. 
 
Synopsis 

• Independence, conditional independence, graphoid axioms. 

• Exponential families, mean and canonical parameterizations, moment matching; 
contingency tables, log-linear models. 

• Undirected graphs, cliques, paths; factorization and Markov properties, 
Hammersley-Clifford Theorem (statement only). 

• Trees, cycles, chords, decomposability, triangulation, running intersection 
property. Maximum likelihood in decomposable models, iterative proportional 
fitting. 
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• The multivariate Gaussian distribution and Gaussian graphical models. 

• Directed acyclic graphs, factorization. Paths, d-separation, moralization. 
Ancestral sets and sub-models. Decomposable models as intersection of 
directed and undirected models. 

• Running intersection property, Junction trees; message passing, computation of 
marginal and conditional probabilities, introduction of evidence. 

• Causal models, linear structural equations, interventions, the trek rule. 

• Average causal effects, adjustment, valid adjustment sets, forbidden projection, 
and optimal adjustment. 

 
Reading 
1. S.L. Lauritzen, Graphical Models, Oxford University Press, 1996. 
2. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, 
MIT Press, 2009. 
3. J. Pearl, Causality, third edition, Cambridge, 2013. 
4. M.J. Wainwright and M.I. Jordan, Graphical Models, Exponential Families, and 
Variational Inference, Foundations and Trends in Machine Learning, 2008. 
(available for free at https://people.eecs.berkeley.edu/ ~ wainwrig/Papers/WaiJor08_FTML.pdf) 
5. A. Agresti. Categorical Data Analysis, 3rd Edition, John Wiley & Sons, 2013. 
 
 
2.6 SC7 Bayes Methods – 16 MT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended prerequisites 
SB2.1 Foundations of Statistical Inference is desirable, of which 6 lectures on Bayesian 
inference, decision theory and hypothesis testing with loss functions are assumed 
knowledge.  A12 Simulation and Statistical Programming desirable. 
 
Synopsis 
Theory: Decision-theoretic foundations, Savage axioms. Prior elicitation, 
exchangeability. Bayesian Non-Parametric (BNP) methods, the Dirichlet process and the 
Chinese Restaurant Process. Asymptotics, and information criteria. 
 
Computational methods: Bayesian inference via MCMC; Estimation of marginal 
likelihood; Approximate Bayesian Computation and intractable likelihoods; reversible 
jump MCMC. 
 
Case Studies: extend understanding of prior elicitation, BNP methods and asymptotics 
through a small number of substantial examples. Examples to further illustrate building 
statistical models, model choice, model averaging and model assessment, and the use 
of Monte Carlo methods for inference. 
 
Reading 
C.P. Robert,The Bayesian Choice: From Decision-Theoretic Foundations to 
Computational Implementation, 2nd edition, Springer, 2001 
 
Further Reading 
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A. Gelman et al, Bayesian Data Analysis,  3rd edition, Boca Raton Florida: CRC Press, 
2014 
P Hoff, A First Course in Bayesian Statistical Methods, Springer, 2010 
DeGroot, Morris H., Optimal Statistical Decisions. Wiley Classics Library. 2004. 
 
 
2.7 SC9 Probability on Graphs and Lattices – 16 MT 

Level: M-level 
Method of Assessment: Written examination Weight: Unit  

Recommended Prerequisites  

Discrete and continuous time Markov processes on countable state space, as covered 
for example in Part A A8 Probability and Part B SB3.1 Applied Probability.  

Aims and Objectives  

The aim is to introduce fundamental probabilistic and combinatorial tools, as well as key 
models, in the theory of discrete disordered systems. We will examine the large-scale 
behaviour of systems containing many interacting components, subject to some random 
noise. Models of this type have a wealth of applications in statistical physics, biology and 
beyond, and we will see several key examples in the course. Many of the tools we will 
discuss are also of independent theoretical interest, and have far reaching applications. 
For example, we will study the amount of time it takes for a random system to reach its 
stationary distribution (mixing time). This concept is also important in many statistical 
applications, such as studying the run time of MCMC methods.  

Synopsis  

• Uniform spanning trees, loop-erased random walks, Wilson's algorithm, the 
Aldous-Broder algorithm.  

• Percolation, phase transitions in Z^d, specific tools in Z^2.  
• Ising model, random-cluster model and other models from statistical mechanics 

(e.g. Potts model, hard-core model).  
• Glauber dynamics, mixing times, couplings.  

Reading 

• G. Grimmett, Probability on graphs: random processes on graphs and lattices, 

Cambridge University Press, 2010; 2017 (2nd edition). 
• B. Bollobás, O. Riordan, Percolation, Cambridge University Press, 2006. 
• T. Liggett, Continuous time Markov processes: an introduction, American 

Mathematical Society, 2010. 
• D. A. Levin, Y. Peres, E. L. Wilmer, Markov chains and mixing times, American 

Mathematical Society, 2009. 
• H. Duminil-Copin, Introduction to Bernoulli percolation. Lecture notes available 

online at https://www.ihes.fr/~duminil/publi/2017percolation.pdf.  
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2.8 SC10 Algorithmic Foundations of Learning – 16 MT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended Prerequisites 
The course requires a good level of mathematical maturity, and assumes familiarity with 
concepts from introductory-level analysis, probability theory and linear algebra. 
 
Students from nonmathematical backgrounds interested in taking the course would benefit 
from carefully studying chapters 2 and 3 of Lattimore & Szepesvári 2020 ahead of time. 
 
Previous exposure to machine learning or statistical theory is not required. 
 
Aims and objectives 
The course provides a brief introduction to the main areas of research in the theory of 
machine learning, and to the tools used to carry out such research. 
 
Synopsis 

 
• High-dimensional probability: moment-based concentration inequalities; covering, 

packing and chaining; the martingale method; concentration via nonnegative 
supermartingales. Examples in random vectors, matrices and processes. 
 

• Statistical learning theory: empirical risk minimisation; learning via uniform 
convergence; slow & fast rates; Rademacher complexity & VC theory; minimax 
lower bounds. Examples in linear, generalised-linear and kernel-based 
predictors. 
 

• Optimisation, online learning & reinforcement learning: gradient descent 
algorithm and variants; exponential weights algorithm; boosting. Explore-then 
commit & upper-confidence-bounds algorithms for stochastic bandits; basics of 
planning in Markov Decision processes. 

 
Reading 
 

• Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: 
From Theory to Algorithms. Cambridge University Press. 2014 

• Martin J. Wainwright. High-Dimensional Statistics. A Non-Asymptotic Viewpoint. 
Cambridge University Press. 2019. 

• Orabona F. A modern introduction to online learning. Lecture notes available 
online at https://arxiv.org/pdf/1912.13213. 2019. 

• Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Book available online at 
https://tor-lattimore.com/downloads/book/book.pdf. 2019. 

 
 
 
2.9 SC11 Climate Statistics – 16 HT 
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Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended Prerequisites: 
 
As this course is directed at providing a foundation for understanding the statistical 
principles actually used in modern climate science, the methods described will be diverse. 
It is to be expected that most students will have some relevant gaps in their background 
knowledge, which may be made up by supplemental reading; there will be some 
supplemental materials specifically made available for the course, and other teaching 
materials suggested in the lecture notes. 
At a minimum, students will need a grounding in probability and statistical theory at least 
on the level of part A probability and statistics, and underlying mathematical tools such as 
first-year-level analysis and complex variables. There will be heavy use of Linear Algebra, 
assuming proficiency on the level of Oxford’s first-year courses. 
Familiarity with more sophisticated statistical methods on the level of SB1.1 Applied 
Statistics and SB1.2 Computational Statistics will be extremely helpful. In particular, 
familiarity with linear models and principles of model selection, and some prior 
understanding of generalised linear and mixed models will be assumed. Some familiarity 
with principles of simulation-based inference will also be assumed. 
Fourier series will be a major topic, and will be covered from the beginning in the lectures, 
but some prior knowledge (on the level of the first-year course Fourier series and PDEs) 
would be helpful. At a minimum, working with Fourier series requires being comfortable 
with complex numbers, on the level of the first-year 2-lecture Oxford course Introduction 
to Complex Numbers (not complex analysis).). 

Aims and Objectives  
 
This course aims to teach the fundamentals of some statistical concepts and techniques 
that are relevant for understanding and carrying out research in climate science. It will 
introduce the main varieties of climate data, demonstrate how they can be analysed with 
these techniques, and explain core concepts of climate science, showing how advances 
in the field have paralleled advances in statistical methodology. 
The main topics covered are core statistical methods, presented in the context of their 
applications to climate science. The topics are: the nature of climate data; time series (time 
domain and frequency domain); multivariate analysis, multivariate decomposition 
methods (PCA, CCA, related issues), and extreme values; predictive statistics. 
 
Computing 
 
Techniques of data analysis in R will be taught, and students will be expected to engage 
with issues of data analysis. Students are encouraged to familiarise themselves with the 
basic syntax of R, so that they can interpret the code examples included in the lecture 
notes. The problem sheets will include computing questions, which may in principle be 
done in any programming language, though solutions will be provided only in R. Students 
will not be examined on writing code, but on the interpretation of computational outputs. 
 
Synopsis 
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Introduction: 
• History and background of climate science; 
• Varieties of climate data and climate models; 
• Exploratory Data analysis and nonparametric smoothing. 
 
Predictive statistics: 
• Review of model selection for climate models; 
• Data assimilation; 
• Forecast skill and verification; 
• Ensemble forecasting and probabilistic prediction. 
 
Time series: 
• ARIMA models in the time domain; 
• Spurious correlation and regression techniques for time series; 
• Spectral methods; 
• Time-frequency representations: Windowing and wavelets. 
 
Multivariate analysis: 
• Multivariate regression; 
• Principal Components Analysis and Empirical Orthogonal Functions; 
• Canonical Correlation Analysis; 
• Predictable Components Analysis. 
 
Extreme values: 
• Basic theory of extreme value distributions; 
• Convergence theorems (without detailed proofs) for block maxima and Peaks over 
Threshold; 
• Inference for the generalised extreme value distribution; 
• Attribution of extreme events. 
 
Reading 
Statistical Methods for Climate Scientists, Timothy M. Delsole and Michael K. Tippett. 
Time Series Analysis and its Applications, Robert H. Shumway and David S. Stoffer. 
 
Further Reading: 
The Discovery of Global Warming, Spencer Weart. 
Introduction to Time Series and Forecasting, P.J. Brockwell and R.A. Davis. 
Time series: Theory and methods, P.J. Brockwell and R.A. Davis. 
Forecasting: Principles and practice, R. Hyndman. 
“Quantification and interpretation of the climate variability record.” Anna S. von der 
Heydt, et al. Global and Planetary Change 197 (2021): 103399. 
Probability: Theory and Examples, R. Durrett. 
 
3.0 C8.4 Probabilistic Combinatorics - 16 HT   

 
Level: M-level  
Method of Assessment: Written examination. 
Weight: Unit  
 
Recommended Prerequisites: 



14 

B8.5 Graph Theory and A8: Probability. C8.3 Combinatorics is not as essential 
prerequisite for this course, though it is a natural companion for it. 
 
Overview 
Probabilistic combinatorics is a very active field of mathematics, with connections to other 
areas such as computer science and statistical physics. Probabilistic methods are 
essential for the study of random discrete structures and for the analysis of algorithms, but 
they can also provide a powerful and beautiful approach for answering deterministic 
questions. The aim of this course is to introduce some fundamental probabilistic tools and 
present a few applications. 
 
Learning Outcomes 
The student will have developed an appreciation of probabilistic methods in discrete 
mathematics. 
 
Synopsis 
First-moment method, with applications to Ramsey numbers, and to graphs of high girth 
and high chromatic number. 
Second-moment method, threshold functions for random graphs. 
Lovász Local Lemma, with applications to two-colourings of hypergraphs, and to 
Ramsey numbers. 
Chernoff bounds, concentration of measure, Janson's inequality. 
Branching processes and the phase transition in random graphs. 
Clique and chromatic numbers of random graphs. 
 
Reading 
N. Alon and J.H. Spencer, The Probabilistic Method, 3rd  edition, Wiley, 2008 
 
Further Reading: 
B. Bollobás, Random Graphs, 2nd edition, Cambridge University Press, 2001 
M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, ed., Probabilistic Methods for 
Algorithmic Discrete Mathematics, Springer, 1998 
S. Janson, T. Luczak and A. Rucinski, Random Graphs, John Wiley and Sons, 2000 
M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and 
Probabilistic Analysis, Cambridge University Press, New York (NY), 2005 
M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Springer, 2002 
R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, 
1995 
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4  Mathematics units  
 
The Mathematics units that students may take are drawn from Part C of the Honour 
School of Mathematics. For full details of these units, see the Syllabus and Synopses for 
Part C of the Honour School of Mathematics, which are available on the web at 
https://courses.maths.ox.ac.uk/course/index.php?categoryid=890 

 
The Mathematics units that are available are as follows:  

C1.1 Model Theory 16 MT 
C1.2 Godel's Incompleteness Theorems 16 HT 
C1.3 Analytic Topology 16 HT 
C1.4 Axiomatic Set Theory 16 MT 
C2.2 Homological Algebra 16 MT 
C2.3 Representation Theory of Semisimple Lie Algebras 16 HT 
C2.4 Infinite Groups 16 MT 
C2.5 Non-Commutative Rings 16 HT 
C2.6 Introduction to Schemes 16 HT 
C2.7 Category Theory 16 MT 
C3.1 Algebraic Topology 16 MT 
C3.2 Geometric Group Theory 16 HT 
C3.3 Differentiable Manifolds 16 MT 
C3.4 Algebraic Geometry 16 MT 
C3.5 Lie Groups 16 HT 
C3.6 Modular Forms 16 HT 
C3.7 Elliptic Curves 16 MT 
C3.8 Analytic Number Theory 16 MT 
C3.9 Computational Algebraic Topology 16 HT 
C3.10 Additive Combinatorics 16 HT 
C3.11 Riemannian Geometry 16 HT 
C3.12 Low-Dimensional Topology and Knot Theory 16 HT 
C4.1 Further Functional Analysis 16 MT 
C4.3 Functional Analytic Methods for PDEs 16 MT 
C4.6 Fixed Point Methods for Nonlinear PDEs 16 HT 
C4.7 Fourier Analysis 16 HT 
C4.9 
C5.1 

Optimal Transport and Partial Differential Equations 
Solid Mechanics 

16 HT 
16HT 

C5.2 Elasticity and Plasticity 16 MT 
C5.4 Networks 16 HT 
C5.5 Perturbation Methods 16 MT 
C5.6 Applied Complex Variables 16 HT 
C5.7 Topics in Fluid Mechanics 16 MT 
C5.9 Mathematical Mechanical Biology 16 MT 
C5.11 Mathematical Geoscience 16 MT 
C5.12 Mathematical Physiology 16 MT 
C6.1 Numerical Linear Algebra 16 MT 
C6.2 Continuous Optimisation 16 HT 
C6.4 Finite Elements for PDEs  
C6.5 Theories of Deep Learning 16 MT 
C7.1 Theoretical Physics 24MT/16HT 
C7.4 Introduction to Quantum Information 16 HT 
C7.5 General Relativity I 16 MT 
C7.6 General Relativity II 16 HT 
C7.7 Random Matrix Theory 16 HT 
C8.1 Stochastic Differential Equations 16 MT 
C8.2 Stochastic Analysis and PDEs 16 HT 
C8.3 Combinatorics 16 MT 
C8.4 Probabilistic Combinatorics (see page 13) 16 HT 
C8.7 Optimal Control 16 HT 

 

https://courses.maths.ox.ac.uk/course/index.php?categoryid=890

